Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Discussion papers of interdisciplinary research project 373 / Sonderforschungsbereich 373
  • View Item
1997-01-22Buch DOI: 10.18452/3802
Nonparametric Estimation Via Local Estimating Equations, with Applications to Nutrition Calibration
Carroll, Raymond J.
Ruppert, David
Welsh, A. H.
Estimating equations have found wide popularity recently in parametric problems, yielding consistent estimators with asymptotically valid inferences obtained via the sandwich formula. Motivated by a problem in nutritional epidemiology, we use estimating equations to derive nonparametric estimators of a “parameter” depending on a predictor. The nonparametric component is estimated via local polynomials with loess or kernel weighting, asymptotic theory is derived for the latter. In keeping with the estimating equation paradigm, variances of the nonparametric function estimate are estimated using the sandwich method, in an automatic fashion, without the need typical in the literature to derive asymptotic formulae and plug-in an estimate of a density function. The same philosophy is used in estimating the bias of the nonparametric function, i.e., we use an empirical method without deriving asymptotic theory on a case-by-case basis. The methods are applied to a series of examples. The application to nutrition is called “nonparametric calibration” after the term used for studies in that field. Other applications include local polynomial regression for generalized linear models, robust local regression, and local transformations in a latent variable model. Extensions to partially parametric models are discussed.
Files in this item
Thumbnail
17.pdf — Adobe PDF — 312.5 Kb
MD5: 2d949f0be2da19536a92448768c1f0ba
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3802
Permanent URL
https://doi.org/10.18452/3802
HTML
<a href="https://doi.org/10.18452/3802">https://doi.org/10.18452/3802</a>