Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2005-03-01Buch DOI: 10.18452/3873
Implied Trinomial Trees
Čížek, Pavel
Komorád, Karel
Implied trinomial trees (ITTs) present an analogous extension of trinomial trees proposed by Derman, Kani, and Chriss (1996). Like their binomial counterparts, they can fit the market volatility smile and actually converge to the same continuous limit as binomial trees. In addition, they allow for a free choice of the underlying prices at each node of a tree, the so-called state space. This feature of ITTs allows to improve the fit of the volatility smile under some circumstances such as inconsistent, arbitrage-violating, or other market prices leading to implausible or degenerated probability distributions in binomial trees. We introduce ITTs in several steps. We first review main concepts regarding option pricing (Section 1) and implied models (Section 2). Later, we discuss the construction of ITTs (Section 3) and provide some illustrative examples (Section 4).
Files in this item
Thumbnail
7.pdf — Adobe PDF — 336.2 Kb
MD5: db583b3182bfd6ab93481e4b710a2ab3
Notes
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3873
Permanent URL
https://doi.org/10.18452/3873
HTML
<a href="https://doi.org/10.18452/3873">https://doi.org/10.18452/3873</a>