Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2006-01-30Buch DOI: 10.18452/3937
Common Functional Principal Components
Benko, Michal
Härdle, Wolfgang Karl cc
Kneip, Alois
Functional principal component analysis (FPCA) based on the Karhunen-Loève decomposition has been successfully applied in many applications, mainly for one sample problems. In this paper we consider common functional principal components for two sample problems. Our research is motivated not only by the theoretical challenge of this data situation but also by the actual question of dynamics of implied volatility (IV) functions. For different maturities the logreturns of IVs are samples of (smooth) random functions and the methods proposed here study the similarities of their stochastic behavior. Firstly we present a new method for estimation of functional principal components from discrete noisy data. Next we present the two sample inference for FPCA and develop two sample theory. We propose bootstrap tests for testing the equality of eigenvalues, eigenfunctions,and mean functions of two functional samples, illustrate the test-properties by simulation study and apply the method to the IV analysis.
Files in this item
Thumbnail
10.pdf — Adobe PDF — 846.7 Kb
MD5: 37ebea4b6fa08bbdecff5de8df264fd4
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3937
Permanent URL
https://doi.org/10.18452/3937
HTML
<a href="https://doi.org/10.18452/3937">https://doi.org/10.18452/3937</a>