Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2006-04-21Diskussionspapier DOI: 10.18452/3959
Tail Conditional Expectation for vector-valued Risks
Bentahar, Imen
In his paper we introduce a quantile-based risk measure for multivariate financial positions: the vector-valued Tail-conditional-expectation (TCE). We adopt the framework proposed by Jouini, Meddeb, and Touzi [9] to deal with multi-assets portfolios when one accounts for frictions in the financial market. In this framework, the space of risks formed by essentially bounded random vectors, is endowed with some partial vector preorder >= accounting for market frictions. In a first step we provide a definition for quantiles of vector-valued risks which is compatible with the preorder >=. The TCE is then introduced as a natural extension of the “classical” real-valued tail-conditional-expectation. Our main result states that for continuous distributions TCE is equal to a coherent vector-valued risk measure. We also provide a numerical algorithm for computing vector-valued quantiles and TCE.
Files in this item
Thumbnail
29.pdf — Adobe PDF — 646.2 Kb
MD5: 542098c1503b18bc0144d7fc03633ab5
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3959
Permanent URL
https://doi.org/10.18452/3959
HTML
<a href="https://doi.org/10.18452/3959">https://doi.org/10.18452/3959</a>