Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2006-04-24Buch DOI: 10.18452/3960
Approximate Solutions to Dynamic Models
Linear Methods
Uhlig, Harald
Linear Methods are often used to compute approximate solutions to dynamic models, as these models often cannot be solved analytically. Linear methods are very popular, as they can easily be implemented. Also, they provide a useful starting point for understanding more elaborate numerical methods. It shall be described here first for the example of a simple real business cycle model, including how to easily generate the log-linearized equations needed before solving the linear system. For a general framework, formulas are provided for calculating the recursive law of motion. The algorithm described here is implemented with the ``toolkit´´ programs available per http://www.wiwi.hu-berlin.de/wpol/html/toolkit.htm.
Files in this item
Thumbnail
30.pdf — Adobe PDF — 365.5 Kb
MD5: 1d04c74835b9999087936551a3e461ac
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3960
Permanent URL
https://doi.org/10.18452/3960
HTML
<a href="https://doi.org/10.18452/3960">https://doi.org/10.18452/3960</a>