Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2006-05-17Buch DOI: 10.18452/3973
An Iteration Procedure for Solving Integral Equations Related to Optimal Stopping Problems
Belomestny, Denis
Gapeev, Pavel V.
A new algorithm for finding value functions of finite horizon optimal stopping problems in one-dimensional diffusion models is presented. It is based on a time discretization of the corresponding integral equation. The proposed iterative procedure for solving the discretized integral equation converges in a finite number of steps and delivers in each step a lower or an upper bound for value of discretized problem on the whole time interval. The remarks on the application of the method for solving integral equations related to some optimal stopping problems are given.
Files in this item
Thumbnail
43.pdf — Adobe PDF — 429.4 Kb
MD5: dee4729a43778a5e8560cca01e79bd1e
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/3973
Permanent URL
https://doi.org/10.18452/3973
HTML
<a href="https://doi.org/10.18452/3973">https://doi.org/10.18452/3973</a>