Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2006-12-11Buch DOI: 10.18452/4011
Compactness in Spaces of Inner Regular Measures and a General Portmanteau Lemma
Krätschmer, Volker
This paper may be understood as a continuation of Topsøe’s seminal paper ([16]) to characterize,within an abstract setting, compact subsets of finite inner regular measures w.r.t. the weak topology.The new aspect is that neither assumptions on compactness of the inner approximating lattices nor nonsequentialcontinuity properties for the measures will be imposed. As a providing step also a generalizationof the classical Portmanteau lemma will be established. The obtained characterizations of compact subsetsw.r.t. the weak topology encompass several known ones from literature. The investigations rely basicallyon the inner extension theory for measures which has been systemized recently by König ([8], [10],[12]).
Files in this item
Thumbnail
81.pdf — Adobe PDF — 523.9 Kb
MD5: 4a989f14fb0d29b029b104922e63fd49
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4011
Permanent URL
https://doi.org/10.18452/4011
HTML
<a href="https://doi.org/10.18452/4011">https://doi.org/10.18452/4011</a>