Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2007-05-18Buch DOI: 10.18452/4046
Long Memory Persistence in the Factor of ImpliedVolatility Dynamics
Härdle, Wolfgang Karl cc
Mungo, Julius
The volatility implied by observed market prices as a function of the strike and time to maturity form an Implied Volatility Surface (IV S). Practical applications require reducing the dimension and characterize its dynamics through a small number of factors. Such dimension reduction is summarized by a Dynamic Semiparametric Factor Model (DSFM) that characterizes the IV S itself and their movements across time by a multivariate time series of factor loadings. This paper focuses on investigating long range dependence in the factor loadings series. Our result reveals that shocks to volatility persist for a very long time, affecting significantly stock prices. For appropriate representation of the series dynamics and the possibility of improved forecasting, we model the long memory in levels and absolute returns using the class of fractional integrated volatility models that provide flexible structure to capture the slow decaying autocorrelation function reasonably well.
Files in this item
Thumbnail
27.pdf — Adobe PDF — 2.069 Mb
MD5: f67a839a555438bec85e9eea73122442
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4046
Permanent URL
https://doi.org/10.18452/4046
HTML
<a href="https://doi.org/10.18452/4046">https://doi.org/10.18452/4046</a>