Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2007-09-26Buch DOI: 10.18452/4079
Conditional Complexity of Compression for Authorship Attribution
Malyutov, Mikhail B.
Wickramasinghe, Chammi I.
Li, Sufeng
Conditional Complexity of Compression for Authorship Attribution Abstract: We introduce new stylometry tools based on the sliced conditional compression complexity of literary texts which are inspired by the nearly optimal application of the incomputable Kolmogorov conditional complexity (and presumably approximates it). Whereas other stylometry tools can occasionally be very close for different authors, our statistic is apparently strictly minimal for the true author, if the query and training texts are sufficiently large, compressor is sufficiently good and sampling bias is avoided (as in the poll samplings). We tune it and test its performance on attributing the Federalist papers (Madison vs. Hamilton). Our results confirm the previous attribution of Federalist papers by Mosteller and Wallace (1964) to Madison using the Naive Bayes classifier and the same attribution based on alternative classifiers such as SVM, and the second order Markov model of language. Then we apply our method for studying the attribution of the early poems from the Shakespeare Canon and the continuation of Marlowe’s poem ‘Hero and Leander’ ascribed to G. Chapman.
Files in this item
Thumbnail
57.pdf — Adobe PDF — 1.772 Mb
MD5: d7384c51d3c537ee2e9db1b742e6e9fa
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4079
Permanent URL
https://doi.org/10.18452/4079
HTML
<a href="https://doi.org/10.18452/4079">https://doi.org/10.18452/4079</a>