Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2008-07-31Buch DOI: 10.18452/4145
Yield Curve Factors, Term Structure Volatility, and Bond Risk Premia
Hautsch, Nikolaus
Ou, Yangguoyi
We introduce a Nelson-Siegel type interest rate term structure model with the underlying yield factors following autoregressive processes revealing time-varying stochastic volatility. The factor volatilities capture risk inherent to the term struc- ture and are associated with the time-varying uncertainty of the yield curve’s level, slope and curvature. Estimating the model based on U.S. government bond yields applying Markov chain Monte Carlo techniques we find that the yield factors and factor volatilities follow highly persistent processes. Using the extracted factors to explain one-year-ahead bond excess returns we observe that the slope and cur- vature yield factors contain the same explanatory power as the return-forecasting factor recently proposed by Cochrane and Piazzesi (2005). Moreover, we identify slope and curvature risk as important additional determinants of future excess returns. Finally, we illustrate that the yield and volatility factors are closely con- nected to variables reflecting macroeconomic activity, inflation, monetary policy and employment growth. It is shown that the extracted yield curve components have long-term prediction power for macroeconomic fundamentals.
Files in this item
Thumbnail
53.pdf — Adobe PDF — 737.0 Kb
MD5: 85c7a0459cf7571cbc1c8093f40f4652
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4145
Permanent URL
https://doi.org/10.18452/4145
HTML
<a href="https://doi.org/10.18452/4145">https://doi.org/10.18452/4145</a>