Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2009-06-18Buch DOI: 10.18452/4197
Weather-based estimation of wildfire risk
Ho, Joanne
Odening, Martin cc
Catastrophic wildfires in California have become more frequent in past decades, while insured losses per event have been rising substantially. On average, California ranks the highest among states in the U.S. in the number of fires as well as the number of acres burned each year. The study of catastrophic wildfire models plays an important role in the prevention and mitigation of such disasters. Accurate forecasts of potential large fires assist fire managers in preparing resources and strategic planning for fire suppression. Furthermore, fire forecasting can a priori inform insurers on potential financial losses due to large fires. This paper describes a probabilistic model for predicting wildland fire risks using the two-stage Heckman procedure. Using 37 years of spatial and temporal information on weather and fire records in Southern California, this model measures the probability of a fire occurring and estimates the expected size of the fire on a given day and location, offering a technique to predict and forecast wildfire occurrences based on weather information that is readily available at low cost.
Files in this item
Thumbnail
32.pdf — Adobe PDF — 2.213 Mb
MD5: 0865d56d102f8d694caec723abaadf3b
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4197
Permanent URL
https://doi.org/10.18452/4197
HTML
<a href="https://doi.org/10.18452/4197">https://doi.org/10.18452/4197</a>