Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2009-07-30Buch DOI: 10.18452/4203
CDO and HAC
Choroś, Barbara
Härdle, Wolfgang Karl
Okhrin, Ostap
Modelling portfolio credit risk is one of the crucial challenges faced by financial services industry in the last few years. We propose the valuation model of collateralized debt obligations (CDO) based on copula functions with up to three parameters, with default intensities estimated from market data and with a random loss given default that is correlated with default times. The methods presented are used to reproduce the spreads of the iTraxx Europe tranches. We apply hierarchical Archimedean copulae (HAC) whose construction allows for the fact that the risky assets of the CDO pool are chosen from six different industry sectors. The dependence among the assets from the same group is specified with the higher value of the copula parameter, otherwise the lower value of the parameter is ascribed. The copula with two and three parameters models the relation between the loss given default and the default times. Our approach describes the market prices better than the standard pricing procedure based on the Gaussian distribution.
Files in this item
Thumbnail
38.pdf — Adobe PDF — 2.186 Mb
MD5: 463daab86b067c51fcc628f724404b92
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4203
Permanent URL
https://doi.org/10.18452/4203
HTML
<a href="https://doi.org/10.18452/4203">https://doi.org/10.18452/4203</a>