Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2009-10-28Buch DOI: 10.18452/4215
Generalized single-index models
The EFM approach
Cui, Xia
Härdle, Wolfgang Karl cc
Zhu, Lixing
Generalized single-index models are natural extensions of linear models and circumvent the so-called curse of dimensionality. They are becoming increasingly popular in many scientific fields including biostatistics, medicine, economics and finan- cial econometrics. Estimating and testing the model index coefficients beta is one of the most important objectives in the statistical analysis. However, the commonly used assumption on the index coefficients, beta = 1, represents a non-regular problem: the true index is on the boundary of the unit ball. In this paper we introduce the EFM ap- proach, a method of estimating functions, to study the generalized single-index model. The procedure is to first relax the equality constraint to one with (d - 1) components of beta lying in an open unit ball, and then to construct the associated (d - 1) estimating functions by projecting the score function to the linear space spanned by the residuals with the unknown link being estimated by kernel estimating functions. The root-n consistency and asymptotic normality for the estimator obtained from solving the re- sulting estimating equations is achieved, and a Wilk's type theorem for testing the index is demonstrated. A noticeable result we obtain is that our estimator for beta has smaller or equal limiting variance than the estimator of Carroll et al. (1997). A fixed point iterative scheme for computing this estimator is proposed. This algorithm only involves one-dimensional nonparametric smoothers, thereby avoiding the data sparsity problem caused by high model dimensionality. Numerical studies based on simulation and on applications suggest that this new estimating system is quite powerful and easy to implement.
Files in this item
Thumbnail
50.pdf — Adobe PDF — 1.959 Mb
MD5: 7812e83283e4440c6b3aece3cdeca543
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4215
Permanent URL
https://doi.org/10.18452/4215
HTML
<a href="https://doi.org/10.18452/4215">https://doi.org/10.18452/4215</a>