Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2010-08-03Buch DOI: 10.18452/4267
High Dimensional Nonstationary Time Series Modelling with Generalized Dynamic Semiparametric Factor Model
Song, Song
Härdle, Wolfgang Karl cc
Ritov, Ya‘acov
(High dimensional) time series which reveal nonstationary and possibly periodic behavior occur frequently in many fields of science. In this article, we separate the modeling of high dimensional time series to time propagation of low dimensional time series and high dimensional time invariant functions via functional factor analysis. We propose a two-step estimation procedure. At the first step, we detect the deterministic trends of the time series by incorporating time basis selected by the group Lasso-type technique and choose the space basis based on smoothed functional principal component analysis. We show properties of this estimator under various situations extending current variable selection studies. At the second step, we obtain the detrended low dimensional stochastic process, but it also poses an important question: is it justified, from an inferential point of view, to base further statistical inference on the estimated stochastic time series? We show that the difference of the inference based on the estimated time series and "true" unobserved time series is asymptotically negligible, which finally allows one to study the dynamics of the whole high-dimensional system with a low dimensional representation together with the deterministic trend. We apply the method to our motivating empirical problems: studies of the dynamic behavior of temperatures (further used for pricing weather derivatives), implied volatilities and risk patterns and correlated brain activities (neuro-economics related) using fMRI data, where a panel version model is also presented.
Files in this item
Thumbnail
39.pdf — Adobe PDF — 2.556 Mb
MD5: f32abd014c1b6bfc76898d9939bc8d31
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4267
Permanent URL
https://doi.org/10.18452/4267
HTML
<a href="https://doi.org/10.18452/4267">https://doi.org/10.18452/4267</a>