Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2011-01-03Buch DOI: 10.18452/4293
Mean Volatility Regressions
Lin, Lu
Li, Feng
Zhu, Lixing
Härdle, Wolfgang Karl cc
Motivated by increment process modeling for two correlated random and non-random systems from a discrete-time asset pricing with both risk free asset and risky security, we propose a class of semiparametric regressions for a combination of a non-random and a random system. Unlike classical regressions, mean regression functions in the new model contain variance components and the model variables are related to latent variables, for which certain economic interpretation can be made. The motivating example explains why the GARCH-M of which the mean function contains a variance component cannot cover the newly proposed models. Further, we show that statistical inference for the increment process cannot be simply dealt with by a two-step procedure working separately on the two involved systems although the increment process is a weighted sum of the two systems. We further investigate the asymptotic behaviors of estimation by using sophisticated nonparametric smoothing. Monte Carlo simulations are conducted to examine finite-sample performance, and a real dataset published in Almanac of China’s Finance and Banking (2004 and 2005) is analyzed for illustration about the increment process of wealth in financial market of China from 2003 to 2004.
Files in this item
Thumbnail
3.pdf — Adobe PDF — 539.6 Kb
MD5: 51865625b07d5c098487610dfec2f1bd
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4293
Permanent URL
https://doi.org/10.18452/4293
HTML
<a href="https://doi.org/10.18452/4293">https://doi.org/10.18452/4293</a>