Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2011-03-03Buch DOI: 10.18452/4303
Spatial Risk Premium on Weather Derivatives and Hedging Weather Exposure in Electricity
Härdle, Wolfgang Karl cc
Osipenko, Maria
Due to dependency of energy demand on temperature, weather derivatives enable the effective hedging of temperature related fluctuations. However, temperature varies in space and time and therefore the contingent weather derivatives also vary. The spatial derivative price distribution involves a risk premium. We examine functional principal components of temperature variation for this spatial risk premium. We employ a pricing model for temperature derivatives based on dynamics modelled via a vectorial Ornstein-Uhlenbeck process with seasonal variation. We use an analytical expression for the risk premia depending on variation curves of temperature in the measurement period. The dependence is exploited by a functional principal component analysis of the curves. We compute risk premia on cumulative average temperature futures for locations traded on CME and fit to it a geographically weighted regression on functional principal component scores. It allows us to predict risk premia for nontraded locations and to adopt, on this basis, a hedging strategy, which we illustrate in the example of Leipzig.
Files in this item
Thumbnail
13.pdf — Adobe PDF — 897.8 Kb
MD5: d4786ce57483fb7effafeb79c680f856
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4303
Permanent URL
https://doi.org/10.18452/4303
HTML
<a href="https://doi.org/10.18452/4303">https://doi.org/10.18452/4303</a>