Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2011-03-03Buch DOI: 10.18452/4304
Difference based Ridge and Liu type Estimators in Semiparametric Regression Models
Duran, Esra Akdeniz
Härdle, Wolfgang Karl cc
Osipenko, Maria
We consider a difference based ridge regression estimator and a Liu type estimator of the regression parameters in the partial linear semiparametric regression model, y = Xβ + f + ε. Both estimators are analysed and compared in the sense of mean-squared error. We consider the case of independent errors with equal variance and give conditions under which the proposed estimators are superior to the unbiased difference based estimation technique. We extend the results to account for heteroscedasticity and autocovariance in the error terms. Finally, we illustrate the performance of these estimators with an application to the determinants of electricity consumption in Germany.
Files in this item
Thumbnail
14.pdf — Adobe PDF — 619.2 Kb
MD5: 010b0d9c3fee10a804bd9c59f64d315c
Cite
BibTeX
EndNote
RIS
InCopyright
Details

Related Items

Show related Items with similar Title, Author, Creator or Subject.

  • 1997-06-02Buch
    The Efficiency of Bias-Corrected Estimators for Nonparametric Kernel Estimation Based on Local Estimating Equations 
    Kauermann, Göran; Müller, Marlene; Carroll, Raymond J.
    Stuetzle and Mittal (1979) for ordinary nonparametric kernel regression and Kauermann and Tutz (1996) for nonparametric generalized linear model kernel regression constructed estimators with lower order bias than the usual ...
  • 1997-01-22Buch
    Nonparametric Estimation Via Local Estimating Equations, with Applications to Nutrition Calibration 
    Carroll, Raymond J.; Ruppert, David; Welsh, A. H.
    Estimating equations have found wide popularity recently in parametric problems, yielding consistent estimators with asymptotically valid inferences obtained via the sandwich formula. Motivated by a problem in nutritional ...
  • 2006-05-19Buch
    Estimating Covariance Matrices Using Estimating Functions in Nonparametric and Semiparametric Regression 
    Carroll, Raymond J.; Iturria, Stephen J.; Gutierrez, Roberto G.
    We use ideas from estimating function theory to derive new, simply computed consistent covariance matrix estimates in nonparametric regression and in a class of semiparametric problems. Unlike other estimates in the ...
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4304
Permanent URL
https://doi.org/10.18452/4304
HTML
<a href="https://doi.org/10.18452/4304">https://doi.org/10.18452/4304</a>