Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2011-05-10Buch DOI: 10.18452/4312
Extreme value models in a conditional duration intensity framework
Herrera, Rodrigo
Schipp, Bernhard
The analysis of return series from financial markets is often based on the Peaks-over-threshold (POT) model. This model assumes independent and identically distributed observations and therefore a Poisson process is used to characterize the occurrence of extreme events. However, stylized facts such as clustered extremes and serial dependence typically violate the assumption of independence. In this paper we concentrate on an alternative approach to overcome these difficulties. We consider the stochastic intensity of the point process of exceedances over a threshold in the framework of irregularly spaced data. The main idea is to model the time between exceedances through an Autoregressive Conditional Duration (ACD) model, while the marks are still being modelled by generalized Pareto distributions. The main advantage of this approach is its capability to capture the short-term behaviour of extremes without involving an arbitrary stochastic volatility model or a prefiltration of the data, which certainly impacts the estimation. We make use of the proposed model to obtain an improved estimate for the Value at Risk. The model is then applied and illustrated to transactions data from Bayer AG, a blue chip stock from the German stock market index DAX.
Files in this item
Thumbnail
22.pdf — Adobe PDF — 1.168 Mb
MD5: f7e0495062273ea77040e98788393fd7
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4312
Permanent URL
https://doi.org/10.18452/4312
HTML
<a href="https://doi.org/10.18452/4312">https://doi.org/10.18452/4312</a>