Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2011-08-15Buch DOI: 10.18452/4341
When to Cross the Spread
Curve Following with Singular Control
Naujokat, Felix
Horst, Ulrich
In this article the problem of curve following in an illiquid market is addressed. Using techniques of singular stochastic control, we extend the results of [NW11] to a two- sided limit order market with temporary market impact and resilience, where the bid ask spread is now also controlled. We first show existence and uniqueness of an optimal control. In a second step, a suitable version of the stochastic maximum principle is derived which yields a characterisation of the optimal trading strategy in terms of a nonstandard coupled FBSDE. We show that the optimal control can be characterised via buy, sell and no-trade regions. The new feature is that we now get a nondegenerate no-trade region, which implies that market orders are only used when the spread is small. This allows to describe precisely when it is optimal to cross the bid ask spread, which is a fundamental problem of algorithmic trading. We also show that the controlled system can be described in terms of a reflected BSDE. As an application, we solve the portfolio liquidation problem with passive orders.
Files in this item
Thumbnail
53.pdf — Adobe PDF — 516.2 Kb
MD5: ec5e5c91c42635bf5bf1a85a05ed5075
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4341
Permanent URL
https://doi.org/10.18452/4341
HTML
<a href="https://doi.org/10.18452/4341">https://doi.org/10.18452/4341</a>