Parametric estimation
Finite sample theory
The paper aims at reconsidering the famous Le Cam LAN theory. The main features of the approach which make it different from the classical one are: (1) the study is non-asymptotic, that is, the sample size is fixed and does not tend to infinity; (2) the parametric assumption is possibly misspecified and the underlying data distribution can lie beyond the given parametric family. The main results include a large deviation bounds for the (quasi) maximum likelihood and the local quadratic majorization of the log-likelihood process. The latter yields a number of important corollaries for statistical inference: concentration, confidence and risk bounds, expansion of the maximum likelihood estimate, etc. All these corollaries are stated in a non-classical way admitting a model misspecification and finite samples. However, the classical asymptotic results including the efficiency bounds can be easily derived as corollaries of the obtained non-asymptotic statements. The general results are illustrated for the i.i.d. set-up as well as for generalized linear and median estimation. The results apply for any dimension of the parameter space and provide a quantitative lower bound on the sample size yielding the root-n accuracy. We also discuss the procedures which allows to recover the structure when its effective dimension is unknown.
Files in this item