Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2011-11-16Buch DOI: 10.18452/4369
Parametric estimation
Finite sample theory
Spokoiny, Vladimir
The paper aims at reconsidering the famous Le Cam LAN theory. The main features of the approach which make it different from the classical one are: (1) the study is non-asymptotic, that is, the sample size is fixed and does not tend to infinity; (2) the parametric assumption is possibly misspecified and the underlying data distribution can lie beyond the given parametric family. The main results include a large deviation bounds for the (quasi) maximum likelihood and the local quadratic majorization of the log-likelihood process. The latter yields a number of important corollaries for statistical inference: concentration, confidence and risk bounds, expansion of the maximum likelihood estimate, etc. All these corollaries are stated in a non-classical way admitting a model misspecification and finite samples. However, the classical asymptotic results including the efficiency bounds can be easily derived as corollaries of the obtained non-asymptotic statements. The general results are illustrated for the i.i.d. set-up as well as for generalized linear and median estimation. The results apply for any dimension of the parameter space and provide a quantitative lower bound on the sample size yielding the root-n accuracy. We also discuss the procedures which allows to recover the structure when its effective dimension is unknown.
Files in this item
Thumbnail
81.pdf — Adobe PDF — 909.5 Kb
MD5: 6bfb5578fed4878fa4eb781135addabb
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4369
Permanent URL
https://doi.org/10.18452/4369
HTML
<a href="https://doi.org/10.18452/4369">https://doi.org/10.18452/4369</a>