Show simple item record

2011-11-16Buch DOI: 10.18452/4369
Parametric estimation
dc.contributor.authorSpokoiny, Vladimir
dc.date.accessioned2017-06-16T00:32:14Z
dc.date.available2017-06-16T00:32:14Z
dc.date.created2011-12-08
dc.date.issued2011-11-16
dc.date.submitted2011-11-16
dc.identifier.issn1860-5664
dc.identifier.urihttp://edoc.hu-berlin.de/18452/5021
dc.description.abstractThe paper aims at reconsidering the famous Le Cam LAN theory. The main features of the approach which make it different from the classical one are: (1) the study is non-asymptotic, that is, the sample size is fixed and does not tend to infinity; (2) the parametric assumption is possibly misspecified and the underlying data distribution can lie beyond the given parametric family. The main results include a large deviation bounds for the (quasi) maximum likelihood and the local quadratic majorization of the log-likelihood process. The latter yields a number of important corollaries for statistical inference: concentration, confidence and risk bounds, expansion of the maximum likelihood estimate, etc. All these corollaries are stated in a non-classical way admitting a model misspecification and finite samples. However, the classical asymptotic results including the efficiency bounds can be easily derived as corollaries of the obtained non-asymptotic statements. The general results are illustrated for the i.i.d. set-up as well as for generalized linear and median estimation. The results apply for any dimension of the parameter space and provide a quantitative lower bound on the sample size yielding the root-n accuracy. We also discuss the procedures which allows to recover the structure when its effective dimension is unknown.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectmaximum likelihoodeng
dc.subjectlocal quadratic approximationeng
dc.subjectconcentrationeng
dc.subjectcoverageeng
dc.subjectdeficiencyeng
dc.subject.ddc330 Wirtschaft
dc.titleParametric estimation
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-100197032
dc.identifier.doihttp://dx.doi.org/10.18452/4369
local.edoc.pages71
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-year2011
dc.title.subtitleFinite sample theory
dc.identifier.zdb2195055-6
bua.series.nameSonderforschungsbereich 649: Ökonomisches Risiko
bua.series.issuenumber2011,81

Show simple item record