HMM in dynamic HAC models
Härdle, Wolfgang Karl
Okhrin, Ostap
Wang, Weining
Understanding the dynamics of high dimensional non-normal dependency structure is a challenging task. This research aims at attacking this problem by building up a hidden Markov model (HMM) for Hierarchical Archimedean Copulae (HAC), where the HAC represent a wide class of models for high dimensional dependency, and HMM is a statistical technique to describe time varying dynamics. HMM applied to HAC provide flexible modeling for high dimensional non Gaussian time series. Consistency results for both parameters and HAC structures are established in an HMM framework. The model is calibrated to exchange rate data with a VaR application, where the model’s performance is compared with other dynamic models, and in the second application we simulate rainfall process.
Dateien zu dieser Publikation
Referenzen
Is Part Of Series: Sonderforschungsbereich 649: Ökonomisches Risiko - 1, SFB 649 Papers, ISSN:1860-5664
Keine Lizenzangabe