Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2012-04-25Buch DOI: 10.18452/4402
Statistical Modelling of Temperature Risk
Anastasiadou, Zografia
López-Cabrera, Brenda
Recently the topic of global warming has become very popular. The literature has concentrated its attention on the evidence of such effect, either by detecting regime shifts or change points in time series. The majority of these methods are designed to find shifts in mean, but only few can do this for the variance. In this paper we attempt to investigate the statistical evidence of global warming by identifying shifts in seasonal mean of daily average temperatures over time and in seasonal variance of temperature residuals. We present a time series approach for modelling temperature dynamics. A seasonal mean Lasso-type technique based with a multi- plicative structure of Fourier and GARCH terms in volatility is proposed. The model describes well the stylised facts of temperature: seasonality, intertemporal correlations and the heteroscedastic behaviour of residuals. The application to European temperature data indicates that the multiplicative model for the seasonal variance performs better in terms of out of sample forecast than other models proposed in the literature for modelling temperature dynamics. We study the dynamics of the seasonal variance by implementing quantile and expectile functions with confidence corridor to detrended and deseasonalized residuals. We show that shifts in seasonal mean and variance vary from location to location, indicating that all sources of trends other than mean and variance would rise trends over spatial scales. The local effects of temperature risk support the existence of global warming.
Files in this item
Thumbnail
29.pdf — Adobe PDF — 1.222 Mb
MD5: 8b5ad2d2edad9c0056637dcd894583de
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4402
Permanent URL
https://doi.org/10.18452/4402
HTML
<a href="https://doi.org/10.18452/4402">https://doi.org/10.18452/4402</a>