Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2013-01-15Buch DOI: 10.18452/4446
Inference for Multi-Dimensional High-Frequency Data
Equivalence of Methods, Central Limit Theorems, and an Application to Conditional Independence Testing
Bibinger, Markus
Mykland, Per A.
We find the asymptotic distribution of the multi-dimensional multi-scale and kernel estimators for high-frequency financial data with microstructure. Sampling times are allowed to be asynchronous. The central limit theorem is shown to have a feasible version. In the process, we show that the classes of multi-scale and kernel estimators for smoothing noise perturbation are asymptotically equivalent in the sense of having the same asymptotic distribution for corresponding kernel and weight functions. We also include the analysis for the Hayashi-Yoshida estimator in absence of microstructure. The theory leads to multi-dimensional stable central limit theorems for respective estimators and hence allows to draw statistical inference for a broad class of multivariate models and linear functions of the recorded components. This paves the way to tests and confidence intervals in risk measurement for arbitrary portfolios composed of high-frequently observed assets. As an application, we enhance the approach to cover more complex functions and in order to construct a test for investigating hypotheses that correlated assets are independent conditional on a common factor.
Files in this item
Thumbnail
6.pdf — Adobe PDF — 1.142 Mb
MD5: fca4a416c0195b65dc42c9ea0ed9aa09
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4446
Permanent URL
https://doi.org/10.18452/4446
HTML
<a href="https://doi.org/10.18452/4446">https://doi.org/10.18452/4446</a>