Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2013-05-02Buch DOI: 10.18452/4462
Decomposing Risk in Dynamic Stochastic General Equilibrium
Lan, Hong
Meyer-Gohde, Alexander
We analyze the theoretical moments of a nonlinear approximation to a model of business cycles and asset pricing with stochastic volatility and recursive preferences. We find that heteroskedastic volatility operationalizes a time-varying risk adjustment channel that induces variability in conditional asset pricing measures and assigns a substantial portion of the variance of macroeconomic variables to variations in precautionary behavior, both while leaving its ability to match key macroeconomic and asset pricing facts untouched. Our method decomposes moments into contributions from realized shocks and differing orders of approximation and from shifts in the distribution of future shocks, enabling us to identify the common channel through which stochastic volatility in isolation operates and through which conditional asset pricing measures vary.
Files in this item
Thumbnail
22.pdf — Adobe PDF — 828.8 Kb
MD5: 3ce8f1bfb420bbe5d18e98bd6d23edb4
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4462
Permanent URL
https://doi.org/10.18452/4462
HTML
<a href="https://doi.org/10.18452/4462">https://doi.org/10.18452/4462</a>