Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2013-05-07Buch DOI: 10.18452/4464
Pruning in Perturbation DSGE Models
Guidance from Nonlinear Moving Average Approximations
Lan, Hong
Meyer-Gohde, Alexander
We derive recursive representations of nonlinear moving average (NLMA) perturbations of DSGE models. As the stability of higher order NLMA representations follows directly from stability at first order, these recursive representations provide rigorous support for the practice of pruning that is becoming widespread. Our recursive representation differs from pruned perturbations in that it centers the approximation and its coefficients at the approximation of the stochastic steady state consistent with the order of approximation. We compare our algorithm with six different pruning algorithms at second and third order, documenting the differences between these six algorithms and standard (non pruned) state space perturbations at first, second, and third order in a unified notation compatible with the popular software package Dynare. While our third order algorithm is the most accurate, the gains over two alternate algorithms are modest, suggesting that this choice is unlikely to be a potential source of error.
Files in this item
Thumbnail
24.pdf — Adobe PDF — 1018. Kb
MD5: 43420de9553a3ac131553c80ae0a2543
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4464
Permanent URL
https://doi.org/10.18452/4464
HTML
<a href="https://doi.org/10.18452/4464">https://doi.org/10.18452/4464</a>