Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2013-05-16Buch DOI: 10.18452/4466
State Price Densities implied from weather derivatives
Härdle, Wolfgang Karl cc
López-Cabrera, Brenda
Teng, Huei-Wen
A State Price Density (SPD) is the density function of a risk neutral equivalent martingale measure for option pricing, and is indispensible for exotic option pricing and portfolio risk management. Many approaches have been proposed in the last two decades to calibrate a SPD using financial options from the bond and equity markets. Among these, non and semi parametric methods were preferred because they can avoid model mis-specification of the underlying and thus give insight into complex portfolio propelling. However, these methods usually require a large data set to achieve desired convergence properties. Despite recent innovations in finan- cial and insurance markets, many markets remain incomplete and there exists an illiquidity issue. One faces the problem in estimation by e.g. kernel techniques that there are not enough observations locally available. For this situation, we employ a Bayesian quadrature method because it allows us to incorporate prior assumptions on the model parameters and hence avoids problems with data sparsity. It is able to compute the SPD of both call and put options simultaneously, and is particularly robust when the market faces the illiquidity issue. By comparing our approach with other approaches, we show that the traditional way of estimating the SPD by differ- entiating an interpolation of option prices does not hold in practice. As illustration, we calibrate the SPD for weather derivatives, a classical example of incomplete mar- kets with financial contracts payoffs linked to non-tradable assets, namely, weather indices. Finally, we study the dynamics of the implied SPD's and related to weather data.
Files in this item
Thumbnail
26.pdf — Adobe PDF — 1.434 Mb
MD5: 5b917bb3a1e5aa0385ebfde2d8b98ef7
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4466
Permanent URL
https://doi.org/10.18452/4466
HTML
<a href="https://doi.org/10.18452/4466">https://doi.org/10.18452/4466</a>