Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2013-05-28Buch DOI: 10.18452/4468
Analysis of Deviance in Generalized Partial Linear Models
Härdle, Wolfgang Karl cc
Huang, Li-Shan
We develop analysis of deviance tools for generalized partial linear models based on local polynomial fitting. Assuming a canonical link, we propose expressions for both local and global analysis of deviance, which admit an additivity property that reduces to ANOVA decompositions in the Gaussian case. Chi-square tests based on integrated likelihood functions are proposed to formally test whether the nonparametric term is significant. Simulation results are shown to illustrate the proposed chi-square tests. The methodology is applied to German Bundesbank Federal Reserve data.
Files in this item
Thumbnail
28.pdf — Adobe PDF — 721.8 Kb
MD5: 8869bca67323f664a5aa59fc997ec017
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4468
Permanent URL
https://doi.org/10.18452/4468
HTML
<a href="https://doi.org/10.18452/4468">https://doi.org/10.18452/4468</a>