Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2014-01-02Buch DOI: 10.18452/4488
Principal Component Analysis in an Asymmetric Norm
Tran, Ngoc Mai
Osipenko, Maria
Härdle, Wolfgang Karl cc
Principal component analysis (PCA) is a widely used dimension reduction tool in the analysis of many kind of high-dimensional data. It is used in signal processing, mechanical ingeneering, psychometrics, and other fields under different names. It still bears the same mathematical idea: the decomposition of variation of a high dimensional object into uncorrelated factors or components. However, in many of the above applications, one is interested in capturing the tail variables of the data rather than variation around the mean. Such applications include weather related event curves, expected shortfalls, and speeding analysis among others. These are all high dimensional tail objects which one would like to study in a PCA fashion. The tail character though requires to do the dimension reduction in an asymmetric norm rather than the classical L2-type orthogonal projection. We develop an analogue of PCA in an asymmetric norm. These norms cover both quantiles and expectiles, another tail event measure. The difficulty is that there is no natural basis, no 'principal components', to the k-dimensional subspace found. We propose two definitions of principal components and provide algorithms based on iterative least squares. We prove upper bounds on their convergence times, and compare their performances in a simulation study. We apply the algorithms to a Chinese weather dataset with a view to weather derivative pricing.
Files in this item
Thumbnail
1.pdf — Adobe PDF — 3.423 Mb
MD5: fe01e230009f2be8b8444c766cb9742c
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4488
Permanent URL
https://doi.org/10.18452/4488
HTML
<a href="https://doi.org/10.18452/4488">https://doi.org/10.18452/4488</a>