Show simple item record

2014-01-02Diskussionspapier DOI: 10.18452/4488
Principal Component Analysis in an Asymmetric Norm
dc.contributor.authorTran, Ngoc Mai
dc.contributor.authorOsipenko, Maria
dc.contributor.authorHärdle, Wolfgang Karl
dc.date.accessioned2017-06-16T00:55:59Z
dc.date.available2017-06-16T00:55:59Z
dc.date.created2014-03-13
dc.date.issued2014-01-02
dc.date.submitted2014-01-02
dc.identifier.issn1860-5664
dc.identifier.urihttp://edoc.hu-berlin.de/18452/5140
dc.description.abstractPrincipal component analysis (PCA) is a widely used dimension reduction tool in the analysis of many kind of high-dimensional data. It is used in signal processing, mechanical ingeneering, psychometrics, and other fields under different names. It still bears the same mathematical idea: the decomposition of variation of a high dimensional object into uncorrelated factors or components. However, in many of the above applications, one is interested in capturing the tail variables of the data rather than variation around the mean. Such applications include weather related event curves, expected shortfalls, and speeding analysis among others. These are all high dimensional tail objects which one would like to study in a PCA fashion. The tail character though requires to do the dimension reduction in an asymmetric norm rather than the classical L2-type orthogonal projection. We develop an analogue of PCA in an asymmetric norm. These norms cover both quantiles and expectiles, another tail event measure. The difficulty is that there is no natural basis, no 'principal components', to the k-dimensional subspace found. We propose two definitions of principal components and provide algorithms based on iterative least squares. We prove upper bounds on their convergence times, and compare their performances in a simulation study. We apply the algorithms to a Chinese weather dataset with a view to weather derivative pricing.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Wirtschaftswissenschaftliche Fakultät
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subjectprincipal componentsger
dc.subjectasymmetric normger
dc.subjectdimension reductionger
dc.subjectquantileger
dc.subjectexpectileger
dc.subject.ddc310 Sammlungen allgemeiner Statistiken
dc.subject.ddc330 Wirtschaft
dc.titlePrincipal Component Analysis in an Asymmetric Norm
dc.typeworkingPaper
dc.identifier.urnurn:nbn:de:kobv:11-100215969
dc.identifier.doihttp://dx.doi.org/10.18452/4488
local.edoc.pages33
local.edoc.type-nameDiskussionspapier
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-year2014
dc.identifier.zdb2195055-6
bua.series.nameSonderforschungsbereich 649: Ökonomisches Risiko
bua.series.issuenumber2014,1

Show simple item record