Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2014-01-13Buch DOI: 10.18452/4493
A consistent two-factor model for pricing temperature derivatives
Groll, Andreas
López-Cabrera, Brenda
Meyer-Brandis, Thilo
We analyze a consistent two-factor model for pricing temperature derivatives that incorporates the forward looking information available in the market by specifying a model for the dynamics of the complete meteorological forecast curve. The two-factor model is a generalization of the Nelson-Siegel curve model by allowing factors with mean-reversion to a stochastic mean for structural changes and seasonality for periodic patterns. Based on the outcomes of a statistical analysis of forecast data we conclude that the two-factor model captures well the stylized features of temperature forecast curves. In particular, a functional principal component analysis reveals that the model re ects reasonably well the dynamical structure of forecast curves by decomposing their shapes into a tilting and a bending factor. We continue by developing an estimation procedure for the model, before we derive explicit prices for temperature derivatives and calibrate the market price of risk (MPR) from temperature futures derivatives (CAT, HDD, CDD) traded at the Chicago Mercantile Exchange (CME). The factor model shows that the behavior of the implied MPR for futures traded in and out of the measurement period is more stable than other estimates obtained in the literature. This confirms that at least parts of the irregularity of the MPR is not due to irregular risk perception but rather due to information misspecification. Similar to temperature derivatives, this approach can be used for pricing other non-tradable assets.
Files in this item
Thumbnail
6.pdf — Adobe PDF — 2.765 Mb
MD5: 03e70a648d5ba75288bb3784caec313d
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4493
Permanent URL
https://doi.org/10.18452/4493
HTML
<a href="https://doi.org/10.18452/4493">https://doi.org/10.18452/4493</a>