Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2014-01-16Buch DOI: 10.18452/4495
Simultaneous Confidence Corridors and Variable Selection for Generalized Additive Models
Zheng, Shuzhuan
Liu, Rong
Yang, Lijian
Härdle, Wolfgang Karl cc
In spite of the widespread use of generalized additive models (GAMs), there is no well established methodology for simultaneous inference and variable selection for the components of GAM. There is no doubt that both, inference on the marginal component functions and their selection, are essential in this additive statistical models. To this end, we establish simultaneous confidence corridors (SCCs) and a variable selection criteria through the spline-backfitted kernel smoothing techniques. To characterize the global features of each component, SCCs are constructed for testing their shapes. By extending the BIC to additive models with identity/trivial link, an asymptotically consistent BIC approach for variable selection is proposed. Our procedures are examined in simulations for its theoretical accuracy and performance, and used to forecast the default probability of listed Japanese companies.
Files in this item
Thumbnail
8.pdf — Adobe PDF — 456.0 Kb
MD5: f44336cc7830460919549336c7dc0c9d
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4495
Permanent URL
https://doi.org/10.18452/4495
HTML
<a href="https://doi.org/10.18452/4495">https://doi.org/10.18452/4495</a>