Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2014-09-24Buch DOI: 10.18452/4540
Designing an Index forAssessing Wind EnergyPotential
Ritter, Matthias
Shen, Zhiwei
Cabrera, Brenda López
Odening, Martin
Deckert, Lars
To meet the increasing global demand for renewable energy such as wind energy, more and more new wind parks are installed worldwide. Finding a suitable location, however, requires a detailed and often costly analysis of the local wind conditions. Plain average wind speed maps cannot provide a precise forecast of wind power because of the non-linear relationship between wind speed and production. In this paper, we suggest a new approach of assessing the local wind energy potential: Meteorological reanalysis data are applied to obtain long-term low-scale wind speed data at turbine location and hub height; then, with actual high-frequency production data, the relation between wind data and energy production is determined via a five parameter logistic function. The resulting wind energy index allows for a turbine-specific estimation of the expected wind power at an unobserved location. A map of wind power potential for whole Germany exemplifies the approach.
Files in this item
Thumbnail
52.pdf — Adobe PDF — 2.014 Mb
MD5: 0527ff341c1b07c9a09a36690f422c50
Cite
BibTeX
EndNote
RIS
No license information
Details
DINI-Zertifikat 2016OpenAIRE validated
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4540
Permanent URL
https://doi.org/10.18452/4540
HTML
<a href="https://doi.org/10.18452/4540">https://doi.org/10.18452/4540</a>