Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2014-09-26Buch DOI: 10.18452/4541
Improved volatility estimation based on limit order books
Bibinger, Markus
Jirak, Moritz
Reiss, Markus
For a semi-martingale Xt, which forms a stochastic boundary, a rate-optimal estimator for its quadratic variation hX;Xit is con- structed based on observations in the vicinity of Xt. The problem is embedded in a Poisson point process framework, which reveals an interesting connection to the theory of Brownian excursion ar- eas. A major application is the estimation of the integrated squared volatility of an efficient price process Xt from intra-day order book quotes. We derive n????1=3 as optimal convergence rate of integrated squared volatility estimation in a high-frequency framework with n observations (in mean). This considerably improves upon the classi- cal n????1=4-rate obtained from transaction prices under microstructure noise.
Files in this item
Thumbnail
53.pdf — Adobe PDF — 1.577 Mb
MD5: 909069dafd194aacb0e0d3b0234745f0
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4541
Permanent URL
https://doi.org/10.18452/4541
HTML
<a href="https://doi.org/10.18452/4541">https://doi.org/10.18452/4541</a>