Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2014-11-08Buch DOI: 10.18452/4543
Estimating the SpotCovariation of Asset Prices
Statistical Theory andEmpirical Evidence
Bibinger, Markus
Reiss, Markus
Hautsch, Nikolaus
Malec, Peter
We propose a new estimator for the spot covariance matrix of a multi-dimensional continuous semi-martingale log asset price process which is subject to noise and non-synchronous observations. The estimator is constructed based on a local average of block-wise parametric spectral covariance estimates. The latter originate from a local method of moments (LMM) which recently has been introduced by Bibinger et al. (2014). We extend the LMM estimator to allow for autocorrelated noise and propose a method to adaptively infer the autocorrelations from the data. We prove the consistency and asymptotic normality of the proposed spot covariance estimator. Based on extensive simulations we provide empirical guidance on the optimal implementation of the estimator and apply it to high-frequency data of a cross-section of NASDAQ blue chip stocks. Employing the estimator to estimate spot covariances, correlations and betas in normal but also extreme-event periods yields novel insights into intraday covariance and correlation dynamics. We show that intraday (co-)variations (i) follow underlying periodicity patterns, (ii) reveal substantial intraday variability associated with (co-)variation risk, (iii) are strongly serially correlated, and (iv) can increase strongly and nearly instantaneously if new information arrives.
Files in this item
Thumbnail
55.pdf — Adobe PDF — 1.738 Mb
MD5: 6b092708a38f6bf5240a591a9c9b7b5b
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4543
Permanent URL
https://doi.org/10.18452/4543
HTML
<a href="https://doi.org/10.18452/4543">https://doi.org/10.18452/4543</a>