Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2015-01-30Buch DOI: 10.18452/4562
Distillation of News Flow intoAnalysis of Stock Reactions
Zhang, Junni L.
Härdle, Wolfgang Karl
Chen, Cathy Y.
Bommes, Elisabeth
News carry information of market moves. The gargantuan plethora of opinions, facts and tweets on financial business owners the opportunity to test and analyze the influence of such text sources on future directions of stocks. It also creates though the necessity to distill via statistical technology the informative elements of this prodigious and indeed colossal data source. Using mixed text sources from professional platforms, blog fora and stock message boards we distill via different lexica sentiment variables. These are employed for an analysis of stock reactions: volatility, volume and returns. An increased (negative) sentiment will in uence volatility as well as volume. This influuence is contingent on the lexical projection and different across GICS sectors. Based on review articles on 100 S&P 500 constituents for the period of October 20, 2009 to October 13, 2014 we project into BL, MPQA, LM lexica and use the distilled sentiment variables to forecast individual stock indicators in a panel context. Exploiting different lexical projections, and using different stock reaction indicators we aim at answering the following research questions: (i) Are the lexica consistent in their analytic ability to produce stock reaction indicators, including volatility, detrended log trading volume and return? (ii) To which degree is there an asymmetric response given the sentiment scales (positive v.s. negative)? (iii) Are the news of high attention firms diffusing faster and result in more timely and effcient stock reaction? (iv) Is there a sector specific reaction from the distilled sentiment measures? We find there is significant incremental information in the distilled news ow. The three lexica though are not consistent in their analytic ability. Based on confidence bands an asymmetric, attention-specific and sector-specific response of stock reactions is diagnosed.
Files in this item
Thumbnail
5.pdf — Adobe PDF — 1.494 Mb
MD5: 33ca699bc944cccda610d212dd4852e1
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4562
Permanent URL
https://doi.org/10.18452/4562
HTML
<a href="https://doi.org/10.18452/4562">https://doi.org/10.18452/4562</a>