Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2015-05-18Buch DOI: 10.18452/4584
Forecasting volatility of wind power production
Shen, Zhiwei
Ritter, Matthias cc
Abstract: The increasing share of wind energy in the portfolio of energy sources highlights its uncertainties due to changing weather conditions. To account for the uncertainty in predicting wind power production, this article examines the volatility forecasting abilities of different GARCH-type models for wind power production. Moreover, due to characteristic features of the wind power process, such as heteroscedasticity and nonlinearity, we also investigate the use of a Markov regime-switching GARCH (MRS-GARCH) model on forecasting volatility of wind power. The realized volatility, which is derived from lower-scale data, serves as a benchmark for the latent volatility. We find that the MRS-GARCH model significantly outperforms traditional GARCH models in predicting the volatility of wind power, while the exponential GARCH model is superior among traditional GARCH models.
Files in this item
Thumbnail
26.pdf — Adobe PDF — 980.8 Kb
MD5: 0a22df87fe0d2a7be71786f3d654998e
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4584
Permanent URL
https://doi.org/10.18452/4584
HTML
<a href="https://doi.org/10.18452/4584">https://doi.org/10.18452/4584</a>