Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2015-05-27Buch DOI: 10.18452/4587
Change point and trend analysesof annual expectile curvesof tropical storms
Burdejova, P.
Härdle, Wolfgang Karl cc
Kokoszka, P.
Xiong, Q.
Abstract: Motivated by the conjectured existence of trends in the intensity of tropical storms, this paper proposes new inferential methodology to detect a trend in the annual pattern of environmental data. The new methodology can be applied to data which can be represented as annual curves which evolve from year to year. Other examples include annual temperature or log–precipitation curves at specific locations. Within a framework of a functional regression model, we derive two tests of significance of the slope function, which can be viewed as the slope coefficient in the regression of the annual curves on year. One of the tests relies on a Monte Carlo distribution to compute the critical values, the other is pivotal with the chi– square limit distribution. Full asymptotic justification of both tests is provided. Their finite sample properties are investigated by a simulation study. Applied to tropical storm data, these tests show that there is a significant trend in the shape of the annual pattern of upper wind speed levels of hurricanes.
Files in this item
Thumbnail
29.pdf — Adobe PDF — 893.9 Kb
MD5: d32dff8484b0f81531e4d84ba14366cc
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4587
Permanent URL
https://doi.org/10.18452/4587
HTML
<a href="https://doi.org/10.18452/4587">https://doi.org/10.18452/4587</a>