Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2015-07-20Buch DOI: 10.18452/4591
Factorisable Sparse Tail Event Curves
Chao, Shih-Kang
Härdle, Wolfgang Karl cc
Yuan, Ming
In this paper, we propose a multivariate quantile regression method which enables localized analysis on conditional quantiles and global comovement analysis on conditional ranges for high-dimensional data. The proposed method, hereafter referred to as FActorisable Sparse Tail Event Curves, or FASTEC for short, exploits the potential factor structure of multivariate conditional quantiles through nuclear norm regularization and is particularly suitable for dealing with extreme quantiles. We study both theoretical properties and computational aspects of the estimating procedure for FASTEC. In particular, we derive nonasymptotic oracle bounds for the estimation error, and develope an efficient proximal gradient algorithm for the non-smooth optimization problem incurred in our estimating procedure. Merits of the proposed methodology are further demonstrated through applications to Conditional Autoregressive Value-at-Risk (CAViaR) (Engle and Manganelli; 2004), and a Chinese temperature dataset.
Files in this item
Thumbnail
34.pdf — Adobe PDF — 4.974 Mb
MD5: 77df6505abe1d3de91445041262a1db3
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4591
Permanent URL
https://doi.org/10.18452/4591
HTML
<a href="https://doi.org/10.18452/4591">https://doi.org/10.18452/4591</a>