Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
  • edoc-Server Home
  • Schriftenreihen und Sammelbände
  • Fakultäten und Institute der HU
  • Wirtschaftswissenschaftliche Fakultät
  • Sonderforschungsbereich 649: Ökonomisches Risiko
  • View Item
2016-10-19Buch DOI: 10.18452/4649
Principal Component Analysis in an Asymmetric Norm
Tran, Ngoc M.
Burdejová, Petra
Osipenko, Maria
Härdle, Wolfgang Karl cc
Principal component analysis (PCA) is a widely used dimension reduction tool in the analysis of high-dimensional data. However, in many applications such as risk quantification in finance or climatology, one is interested in capturing the tail variations rather than variation around the mean. In this paper, we develop Principal Expectile Analysis (PEC), which generalizes PCA for expectiles. It can be seen as a dimension reduction tool for extreme value theory, where one approximates uctuations in the [tau]-expectile level of the data by a low dimensional subspace. We provide algorithms based on iterative least squares, prove upper bounds on their convergence times, and compare their performances in a simulation study. We apply the algorithms to a Chinese weather dataset and fMRI data from an investment decision study.
Files in this item
Thumbnail
40.pdf — Adobe PDF — 4.880 Mb
MD5: 3a0f6b2044c4dcc9e8d5f20a3ac31036
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/4649
Permanent URL
https://doi.org/10.18452/4649
HTML
<a href="https://doi.org/10.18452/4649">https://doi.org/10.18452/4649</a>