Show simple item record

2000-02-16Buch DOI: 10.18452/8230
Finite capacity production planning with random demand and limited information
dc.contributor.authorAlbritton, Michael
dc.contributor.authorShapiro, Alexander
dc.contributor.authorSpearman, Mark
dc.contributor.editorHigle, Julie L.
dc.contributor.editorRömisch, Werner
dc.contributor.editorSen, Surrajeet
dc.date.accessioned2017-06-16T19:37:29Z
dc.date.available2017-06-16T19:37:29Z
dc.date.created2006-02-09
dc.date.issued2000-02-16
dc.date.submitted2000-02-08
dc.identifier.urihttp://edoc.hu-berlin.de/18452/8882
dc.description.abstractProduction planning has a fundamental role in any manufacturing operation. The problem is to decide what type of, and how much, product should be produced in future time periods. The decisions should be based on many factors, including period machine capacity, profit margins, holding costs, etc. Of primary importance is the estimate of demand for manufacturer's products in upcoming periods.Our focus is to address the production planning problem by including in our models the randomness that exists in our estimates for future demands. We solve the problem with two variants of Monte Carlo sampling based optimization techniques, to which we refer as "simulation based optimization" methods. The first variant assumes that we know the actual demand distribution (assumed to be continuous) with which we approximate the true optimal solution by averaging sample estimates of the corresponding expected value function. The second approach is useful when we have limited information about the demand distribution. We illustrate the robustness of the approach by comparing a three mass-point approximation of the continuous distribution to the results obtained using the continuous distribution. This second approach is particularly appealing as it results in a solution that is close to optimal while being much faster than the continuous distribution approach.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.subject.ddc510 Mathematik
dc.titleFinite capacity production planning with random demand and limited information
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-10057558
dc.identifier.doihttp://dx.doi.org/10.18452/8230
local.edoc.container-titleStochastic Programming E-Print Series
local.edoc.pages24
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-volume2000
local.edoc.container-issue6
local.edoc.container-erstkatid2936317-2

Show simple item record