Show simple item record

2000-11-07Buch DOI: 10.18452/8248
Adaptive optimal stochastic trajectory planning and control (AOSTPC) for robots
dc.contributor.authorMarti, Kurt
dc.contributor.editorHigle, Julie L.
dc.contributor.editorRömisch, Werner
dc.contributor.editorSen, Surrajeet
dc.date.accessioned2017-06-16T19:40:59Z
dc.date.available2017-06-16T19:40:59Z
dc.date.created2006-02-10
dc.date.issued2000-11-07
dc.date.submitted2000-10-30
dc.identifier.urihttp://edoc.hu-berlin.de/18452/8900
dc.description.abstractIn optimal control of robots, the standard procedure is to determine first off-line an optimal open-loop control, using some nominal or estimated values of the model parameters, and to correct then the resulting deviation of the effective trajectory or performance of the system from the prescribed trajectory, from the prescribed performance values, resp., by on-line measurement and control actions. However, on-line measurement and control actions are expensive in general and very time-consuming, moreover, they are suitable only for rather small deviations. By adaptive optimal stochastic trajectory planning and control (AOSTPC), i.e., incorporating sequentially the available a priori and measurement information about the unknown model parameters into the optimal control design process by using stochastic optimization methods, the (conditional) mean absolute deviation between the actual and prescribed trajectory, performance, resp., can be reduced considerably, hence, more robust controls are obtained. The corresponding feedforward and feedback (PD-)controls are derived by means of sequential stochastic optimization and by using stability requirements. In addition, methods for the numerical computation of the controls in real-time are presented. Moreover, analytical estimates are given for the reduction of the tracking error, hence, for the reduction of the on-line measurement and correction expenses by applying (AOSTPC).eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510 Mathematik
dc.titleAdaptive optimal stochastic trajectory planning and control (AOSTPC) for robots
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-10057838
dc.identifier.urnurn:nbn:de:kobv:11-10057845
dc.identifier.doihttp://dx.doi.org/10.18452/8248
local.edoc.container-titleStochastic Programming E-Print Series
local.edoc.pages56
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-volume2000
local.edoc.container-issue24
local.edoc.container-erstkatid2936317-2

Show simple item record