Show simple item record

2001-06-26Buch DOI: 10.18452/8259
Applying the minimum risk criterion in stochastic recourse programs
dc.contributor.authorRiis, Morten
dc.contributor.authorSchultz, Rüdiger
dc.contributor.editorHigle, Julie L.
dc.contributor.editorRömisch, Werner
dc.contributor.editorSen, Surrajeet
dc.date.accessioned2017-06-16T19:44:15Z
dc.date.available2017-06-16T19:44:15Z
dc.date.created2006-02-16
dc.date.issued2001-06-26
dc.date.submitted2001-04-20
dc.identifier.urihttp://edoc.hu-berlin.de/18452/8911
dc.description.abstractIn the setting of stochastic recourse programs, we consider the problem of minimizing the probability of total costs exceeding a certain threshold value. The problem is referred to as the minimum risk problem and is posed in order to obtain a more adequate description of risk aversion than that of the accustomed expected value problem. We establish continuity properties of the recourse function as a function of the first-stage decision, as well as of the underlying probability distribution or random parameters. This leads to stability results for the optimal solution of the minimum risk problem when the underlying probability distribution is subjected to perturbations. Furthermore, an algorithm for the minimum risk problem is elaborated and we present results of some preliminary computational experiments.eng
dc.language.isoeng
dc.publisherHumboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik
dc.rights.urihttp://rightsstatements.org/vocab/InC/1.0/
dc.subject.ddc510 Mathematik
dc.titleApplying the minimum risk criterion in stochastic recourse programs
dc.typebook
dc.identifier.urnurn:nbn:de:kobv:11-110-18452/8911-0
dc.identifier.doihttp://dx.doi.org/10.18452/8259
local.edoc.type-nameBuch
local.edoc.container-typeseries
local.edoc.container-type-nameSchriftenreihe
local.edoc.container-year2003
dc.identifier.zdb2936317-2
dcterms.bibliographicCitation.originalpublishernameSpringer Science + Business Media B.V.
dcterms.bibliographicCitation.originalpublisherplaceNew York, NY [u.a.]
bua.series.nameStochastic Programming E-Print Series
bua.series.issuenumber2001,8

Show simple item record