Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2002
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2002
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2002
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2002
  • View Item
2002-05-03Buch DOI: 10.18452/8272
Higher-Order Upper Bounds on the Expectation of a Convex Function
Dokov, Steftcho P.
Morton, David P.
We develop a decreasing sequence of upper bounds on the expectation of a convex function. The n-th term in the sequence uses moments and cross-moments of up to degree n from the underlying random vector. Our work has application to a class of two-stage stochastic programs with recourse. The objective function of such a model can defy computation when: (i) the underlying distribution is assumed to be known only through a limited number of moments or (ii) the function is computationally intractable, even though the distribution is known. A tractable approximating model arises by replacing the objective function by one of our bounding elements. We justify this approach by showing that as n grows, solutions of the order-n approximation solve the true stochastic program.
Files in this item
Thumbnail
8.pdf — Adobe PDF — 391.0 Kb
MD5: b8246c5a59acd8f27fb15c81321b780f
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8272
Permanent URL
https://doi.org/10.18452/8272
HTML
<a href="https://doi.org/10.18452/8272">https://doi.org/10.18452/8272</a>