Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
2003-06-30Buch DOI: 10.18452/8294
Approximation in stochastic integer programming
Stougie, Leen
Vlerk, Maarten H. van der
Approximation algorithms are the prevalent solution methods in the field of stochastic programming. Problems in this field are very hard to solve. Indeed, most of the research in this field has concentrated on designing solution methods that approximate the optimal solutions. However, efficiency in the complexity theoretical sense is usually not taken into account. Quality statements mostly remain restricted to convergence to an optimal solution without accompanying implications on the running time of the algorithms for attaining more and more accurate solutions. However, over the last twenty years also some studies on performance analysis of approximation algorithms for stochastic programming have appeared. In this direction we find both probabilistic analysis and worst-case analysis.There have been studies on performance ratios and on absolute divergence from optimality. Only recently the complexity of stochastic programming problems has been addressed, indeed confirming that these problems are harder than most combinatorial optimization problems.Approximation in the traditional stochastic programming sense will not be discussed in this chapter. The reader interested in this issue is referred to surveys on stochastic programming, like the Handbook on Stochastic Programming [31 ]or the text books [2,16,29 ]. We concentrate on the studies of approximation algorithms which are more similar in nature to those for combinatorial optimization.
Files in this item
Thumbnail
12.pdf — Adobe PDF — 321.4 Kb
MD5: 90909c9631be9daabf79bac4fa56d711
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8294
Permanent URL
https://doi.org/10.18452/8294
HTML
<a href="https://doi.org/10.18452/8294">https://doi.org/10.18452/8294</a>