Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
2003-07-07Buch DOI: 10.18452/8297
A stochastic programming approach for supply chain network design under uncertainty
Santoso, Tjendera
Ahmed, Shabbir
Goetschalckx, Marc
Shapiro, Alexander
This paper proposes a stochastic programming model and solution algorithm for solving sup-ply chain network design problems of a realistic scale. Existing approaches for these problems are either restricted to deterministic environments or can only address a modest number of scenarios for the uncertain problem parameters. Our solution methodology integrates a recently proposed sampling strategy, the Sample Average Approximation scheme, with an accelerated Benders de-composition algorithm to quickly compute high quality solutions to large-scale stochastic supply chain design problems with a huge (potentially infinite) number of scenarios. A computational study involving two real supply chain networks are presented to highlight the significance of the stochastic model as well as the efficiency of the proposed solution strategy.
Files in this item
Thumbnail
15.pdf — Adobe PDF — 329.4 Kb
MD5: 0f262fc199ab57d5e967dfdebc46ad03
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8297
Permanent URL
https://doi.org/10.18452/8297
HTML
<a href="https://doi.org/10.18452/8297">https://doi.org/10.18452/8297</a>