Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
2003-07-25Buch DOI: 10.18452/8298
Epi-convergent discretizations of stochastic programs via integration quadratures
Pennanen, Teemu
Koivu, Matti
Modern integration quadratures are designed to produce finitely supported approximations of a given (probability) measure. This makes them well suited for discretization of stochastic programs. We give conditions that guarantee the epi-convergence of resulting objectives to the original one. Our epi-convergence result is closely related to some of the exisiting ones but it is easier to apply to discretizations. As examples, we will verify the conditions for discretizations of three different models of portfolio management and we study the behavior of various discretizations numerically. In our tests, modern quadratures clearly outperform crude Monte Carlo sampling in discretization of stochastic programs.
Files in this item
Thumbnail
16.pdf — Adobe PDF — 966.9 Kb
MD5: 7cb23c89458167b513c732a0fb089d83
16.ps — Postscript — 851.1 Kb
MD5: 1ed3d76c45327758bb8f48afe93e17b2
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8298
Permanent URL
https://doi.org/10.18452/8298
HTML
<a href="https://doi.org/10.18452/8298">https://doi.org/10.18452/8298</a>