Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2003
  • View Item
2003-09-30Buch DOI: 10.18452/8304
On Leland's option hedging strategy with transaction costs
Zhao, Yonggan
Ziemba, William T.
Nonzero transaction costs invalidate the Black-Scholes (1973) arbitrage argument based on continuous trading. Leland (1985) developed a hedging strategy which modifies the Black-Scholes hedging strategy with a volatility adjusted by the length of the rebalance interval and the rate of the proportional transaction cost. Leland claimed that the exact hedge could be achieved in the limit as the length of rebalance intervals approaches zero. Unfortunately, the main theorem (Leland 1985, P1290) is in error. Simulation results also confirm opposite findings to those in Leland (1985). Since standard delta hedging fails to exactly replicate the option in the presence of transaction costs, we study a pricing and hedging model which is similar to the delta hedging strategy with an endogenous parameter, namely the volatility, for the calculation of delta over time. With transaction costs, the optimally adjusted volatility is substantially different from the stock's volatility under the criterion of minimizing the mean absolute replication error weighted by the probabilities that the option is in or out of the money. This model partially explains the phenomenon that the implied volatilities with equity options are skewed. Data on S&P500 index cash options from January to June 2002 are used to illustrate the model. Option prices from our model are highly consistent with the Black-Scholes option prices when transaction costs are zero.
Files in this item
Thumbnail
22.pdf — Adobe PDF — 262.1 Kb
MD5: 41993d3477b8a5a2303722e01805e85f
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8304
Permanent URL
https://doi.org/10.18452/8304
HTML
<a href="https://doi.org/10.18452/8304">https://doi.org/10.18452/8304</a>