Logo of Humboldt-Universität zu BerlinLogo of Humboldt-Universität zu Berlin
edoc-Server
Open-Access-Publikationsserver der Humboldt-Universität
de|en
Header image: facade of Humboldt-Universität zu Berlin
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2004
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2004
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
All of edoc-ServerCommunity & CollectionTitleAuthorSubjectThis CollectionTitleAuthorSubject
PublishLoginRegisterHelp
StatisticsView Usage Statistics
View Item 
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2004
  • View Item
  • edoc-Server Home
  • Elektronische Zeitschriften
  • Stochastic Programming E-print Series (SPEPS)
  • Volume 2004
  • View Item
2004-05-17Buch DOI: 10.18452/8319
Assessing policy quality in multi-stage stochastic programming
Chiralaksanakul, Anukal
Morton, David P.
Solving a multi-stage stochastic program with a large number of scenarios and a moderate-to-large number of stages can be computationally challenging. We develop two Monte Carlo-based methods that exploit special structures to generate feasible policies. To establish the quality of a given policy, we employ a Monte Carlo-based lower bound (for minimization problems) and use it to construct a confidence interval on the policy's optimality gap. The confidence interval can be formed in a number of ways depending on how the expected solution value of the policy is estimated and combined with the lower-bound estimator. Computational results suggest that a confidence interval formed by a tree-based gap estimator may be an effective method for assessing policy quality. Variance reduction is achieved by using common random numbers in the gap estimator.
Files in this item
Thumbnail
12.pdf — Adobe PDF — 297.6 Kb
MD5: 9184ebff508982bbd879bc537a393c97
Cite
BibTeX
EndNote
RIS
InCopyright
Details
DINI-Zertifikat 2019OpenAIRE validatedORCID Consortium
Imprint Policy Contact Data Privacy Statement
A service of University Library and Computer and Media Service
© Humboldt-Universität zu Berlin
 
DOI
10.18452/8319
Permanent URL
https://doi.org/10.18452/8319
HTML
<a href="https://doi.org/10.18452/8319">https://doi.org/10.18452/8319</a>