A class of stochastic programs with decision dependent uncertainty
dc.contributor.author | Goel, Vikas | |
dc.contributor.author | Grossmann, Ignacio E. | |
dc.contributor.editor | Higle, Julie L. | |
dc.contributor.editor | Römisch, Werner | |
dc.contributor.editor | Sen, Surrajeet | |
dc.date.accessioned | 2017-06-16T20:00:51Z | |
dc.date.available | 2017-06-16T20:00:51Z | |
dc.date.created | 2006-03-02 | |
dc.date.issued | 2004-10-02 | |
dc.date.submitted | 2004-06-05 | |
dc.identifier.uri | http://edoc.hu-berlin.de/18452/8979 | |
dc.description.abstract | The standard approach to formulating stochastic programs is based on the assumption that the stochastic process is independent of the optimization decision. We address a class of problems where the optimization decisions influence the time of information discovery for a subset of the uncertain parameters. We extentd the standard modeling approach by presenting a disjunctive programming formulation that accommodates stochastic programs for this class of ploblems. A set of theoretical properties that lead to reduction in the size of the model is identified. A Lagrange duality based branch and bound algorithm is also presented. | eng |
dc.language.iso | eng | |
dc.publisher | Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät II, Institut für Mathematik | |
dc.rights.uri | http://rightsstatements.org/vocab/InC/1.0/ | |
dc.subject.ddc | 510 Mathematik | |
dc.title | A class of stochastic programs with decision dependent uncertainty | |
dc.type | book | |
dc.identifier.urn | urn:nbn:de:kobv:11-10059657 | |
dc.identifier.doi | http://dx.doi.org/10.18452/8327 | |
local.edoc.pages | 37 | |
local.edoc.type-name | Buch | |
local.edoc.container-type | series | |
local.edoc.container-type-name | Schriftenreihe | |
dc.identifier.zdb | 2936317-2 | |
bua.series.name | Stochastic Programming E-Print Series | |
bua.series.issuenumber | 2004,23 |